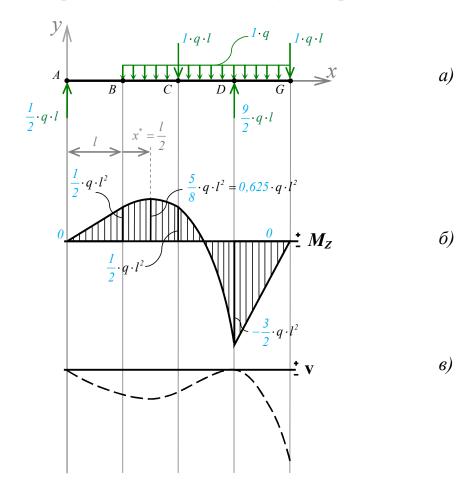

G-11 (ANSYS)

Формулировка задачи:

Дано: Стержень постоянной жёсткости,


шарнирно опёртый, нагружен распределённой силой q и сосредоточенными силами $q \cdot l$.

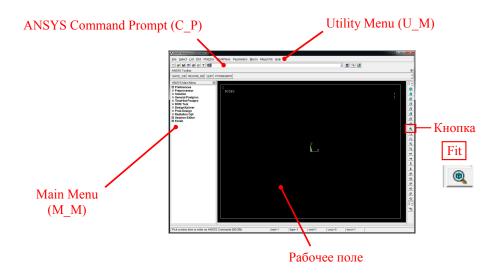
E – модуль упругости материала;

 I_z – изгибный момент инерции.

Построить: Эпюру внутренней перерезывающей силы Q_Y ; Эпюру внутреннего изгибающего момента M_Z .

Аналитический расчёт (см. G-11) даёт следующие решения:

$$\theta_G = \frac{13}{18} \cdot \frac{q \cdot l^3}{E \cdot I_Z} = 0,7222 \cdot \frac{q \cdot l^3}{E \cdot I_Z} - против часовой стрелки.$$
 2)


Рис. 1.

Задача данного примера: при помощи ANSYS Multyphisics получить эти же эпюры методом конечных элементов.

http://www.tychina.pro/библиотека-задач-1/

Предварительные настройки:

Для решения задачи используется ANSYS Multiphysics 14.0:

С меню M_M и U_M работают мышью, выбирая нужные опции.

В окно С_Р вручную вводят текстовые команды, после чего следует нажать на клавиатуре Enter.

Меняем чёрный цвет фона на белый следующими действиями:

U M > PlotCtrls > Style > Colors > Reverse Video

Оставить в меню только пункты, относящиеся к прочностным расчётам:

 ${\tt M_M} > {\tt Preferences} > {\tt Otmetutb}$ "Structural" > OK

Нумеровать точки и линии твердотельной модели:

```
U_M > PlotCtrls > Numbering >
OTMETUTE KP, LINE;

Установить Elem на "No numbering";
Установить [/NUM] на "Colors & numbers" > OK
```

Для большей наглядности увеличим размер шрифта:

```
U_M > PlotCtrls > Font Controls > Legend Font > Установить «Размер» на «22» > ОК
U_M > PlotCtrls > Font Controls > Entity Font > Установить «Размер» на «22» > ОК
```

Предварительные настройки выполнены, можно приступать к решению задачи.

Решение задачи:

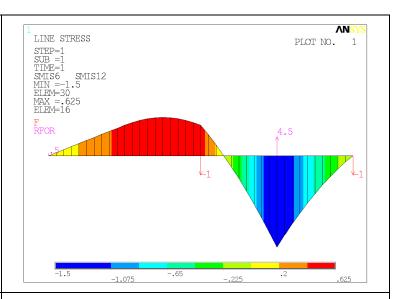
Приравняв E, I_z , q и l к единице, результаты получим в виде чисел, обозначенных на puc. l. синим цветом.

№	Действие	Результат
1	Задаём параметры расчёта — базовые величины задачи: U_M > Parameters > Scalar Parameters > E=1 > Accept > A=1e6 > Accept > Iz=1 > Accept > q=1 > Accept > l=1 > Accept > nu=0.3 > Accept > > Close	Scalar Parameters Items
2	Первая строчка в таблице конечных элементов — плоский балочный тип BEAM3: M_M > Preprocessor C_P > ET,1,BEAM3 > Enter Посмотрим таблицу конечных элементов: M_M > Preprocessor > Element Type > Add/Edit/Delete > Close	Add. Options. Debte Close Close Help
3	Первая строчка в таблице параметров («реальных констант») выбранного типа конечного элемента: площадь поперечного сечения = A ; момент инерции = Iz ; высота = $I/100$. С_P> R,1,A,Iz,L/100 > Enter Посмотрим таблицу реальных констант: M_M > Preprocessor > Real Constants > Add/Edit/Delete > Close	Add Edit Delete Close Help

№	Действие			Результат		
4	Cвойства материала стержня — модуль упругости и коэффициент Пуассона: M_M > Preprocessor > Material Props > Material Models > Structural > Linear > Elastic > Isotropic > B окошке EX пишем "E", в окошке PRXY пишем "nu" > ОК Закрываем окно «Deine Material Model Behavior».		Linear Isol Temperatt EX PRXY	Material Models Availated Number 1 Tropic Material Properties for Material Number 1 Tropic Material Properties for Material Number 1 T1 E Carcel OK Carcel	Graph	
	Твердотельное моделирование					
	Ключевые точки — границы участков: $A \rightarrow 1$, $B \rightarrow 2$, $C \rightarrow 3$, $D \rightarrow 4$ и $G \rightarrow 5$					
	M_M> Preprocessor> Modeling> Create> Keypoints> In Active CS>					
	NPT пишем 1 X,Y,Z пишем 0,0,0 > Apply >					
	NPT пишем 2 X,Y,Z пишем $l,0,0$ > Apply >					
	NPT пишем 3					
_	X,Y,Z пишем $2*l,0,0 > Apply >$	Y M.X				_
5	NPT пишем 4	X.	2	.3	.4	.5
	X,Y,Z пишем $3*l,0,0 > OK$					
	NPT пишем 5 X,Y,Z пишем $4*l,0,0 > OK$					
	Прорисовываем всё, что есть:					
	U_M > Plot > Multi-Plots					
	Справа от рабочего поля нажимаем кнопку Fit					

No	Действие	Результат
No	Действие	Результат
6	<pre>Yemыpe yuacmка — uemыpe линии: M_M > Preprocessor > Modeling > Create > Lines > Lines > Straight Line > Левой кнопкой мыши последовательно нажать на ключевые точки: 1 и 2 2 и 3 3 и 4 4 и 5 > OK</pre>	Y R X T ₁ 1 2 T ₁ 2 .3 T ₁ 3 .4 T ₁ 4 .5
7	Onopы: Левая: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 1 ключевую точку > OK > Lab2 установить "UX" Lab2 установить "UY" > OK Правая: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Displacement > On Keypoints > Левой кнопкой мыши нажать на 4 ключевую точку > OK > Lab2 установить "UY" > OK	TX T1 2 T2 .3 T3 4 T4 .5

№	Действие	Результат
8	Cocpedomoченные силы: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Force/Moment > On Keypoints > Левой кнопкой мыши кликнуть на 3 и 5 ключевые точки > OK > Lab установить "FY" VALUE установить "-q*1" > OK	X T.1 2 T.2 3 T.3 4 T.4 5
	Конечноэлементная модель	
9	Указываем материал, реальные константы и тип элементов: M_M > Preprocessor > Meshing > Mesh Attributes > All Lines > MAT установить "1" REAL установить "1" TYPE установить "1 BEAM3" > OK	
10	Размер элементов: M_M > Preprocessor > Meshing > Size Cntrls > ManualSize > Lines > All Lines > SIZE пишем L/10 > ОК Обновляем изображение: U_M > Plot > Lines При необходимости корректируйте масштаб: или .	Y L X L 1 L 2 L L 2 L 2 L 3 L 3 L 4 L 4 L 5


№	Действие	Результат
11	Рабиваем линии на элементы:M_M > Preprocessor > Meshing > Mesh > Lines > Pick AllОбновляем изображение: U_M > Plot > Multi-PlotsВидим сразу две модели - твердотельную и конечноэлементную.	Y T. X . T. 1 . 2 T. 2 T. 3 T. 3
12	Поперечная распределённая нагрузка q: M_M > Preprocessor > Loads > Define Loads > Apply > Structural > Pressure > On Beams > B появившейся панельке Apply PRES on Beams отмечаем "Вох" на селекторе, потом мышью растягиваем прямоугольник, захватывающий последние три участка балки − от точки 2 до точки 5 > ОК > LKEY пишем 1 VALI пишем q > ОК	YX. I.1. 2. I.2. 3. I.3. 4. I.4. 5 YX. I.1. 2. I.2. 3. I.3. 4. I.4. 5

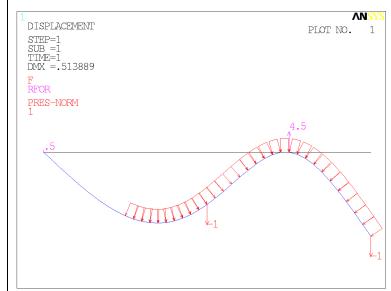
Nº	Действие	Результат
13	Указываем, что именно нужно теперь прорисовывать по команде Multi-Plots:U_M > PlotCtrls > Multi-Plot Controls >Появляется первое окно Multi-Plotting >> OK >Появляется второе окно Multi-Plotting >Оставляем в нём отметки только напротив Nodes и Elements> OKОбновляем изображение: U_M > Plot > Multi-PlotsТеперь видим только конечноэлементную модель.	X X
14	Переносим на конечноэлементную модель нагрузки и закрепления с модели твердотельной: M_M > Loads > Define Loads > Operate > Transfer to FE > All Solid Lds > OK Обновляем изображение: U_M > Plot > Multi-Plots	X
15	Скрываем оси системы координат: U_M > PlotCtrls > Window Controls > Window Options > [/Triad] установить "Not Shown" > OK	PA
	Расчёт	
16	Запускаем расчёт:M_M > Solution > Solve > Current LSКогда он закончится, появится окно «Solution is done!». Закройте это окно.	

№	Действие	Результат
	Просмотр результатов	
17	Cunobas cxema: U_M > PlotCtrls > Symbols > [/PBC] устанавливаем в положение "For Individual" Убираем галочку с "Miscellaneous" Surface Load Symbols устанавливаем Pressures Show pres and convect as устанавливаем Arrows > OK > B окне "Applied Boundary Conditions" U установить "Off" Rot установить "Symbol+Value" M установить "Symbol+Value" > OK > B окне "Reactions" NFOR установить "Off" RFOR установить "Off" RFOR установить "Symbol+Value" RMOM установить "Symbol+Value" > OK Oбновляем изображение: U_M > Plot > Elements Получаем тот же результат, что и на puc. la. (числа, выделенные синим цветом). В рабочем поле видим следующее: - Красным цветом начерчены внешние силы, сосредоточенные и распределённые; - Малиновым цветом нарисованы реактивные силы.	E-N PLOT NO. 1 FROR PRES-NORM 1 4.5

No	Действие	Результат
18	<pre>U_M > PlotCtrls > Style > Contours > Uniform Contours > NCONT пишем 10 > OK</pre>	
19	Cocmaвление эпюры внутреннего изгибающего момента: M_M > General Postproc > Element Table > Define Table > Add > "By sequence num", "SMISC,", "6" > Apply > "By sequence num", "SMISC,", "12" > OK > > Close Смотрим таблицу результатов: M_M > General Postproc > Element Table > Define Table > Close	Current Paire Cora Currently Defined Data and Status: Label tem Corro Time Stamp Status SMSS SMS 6 Time=1 00000 (Current) SMSS 2 SMS 12 Time=1 00000 (Current) MdS12 SMSS 12 Time=1 00000 (Current) Add Update Delete Close Heip
20	Прорисовка эпюры внутреннего изгибающего момента: M_M > General Postproc > Plot Results > Contour Plot > Line Elem Res > LabI установить "SMIS6" LabJ установить "SMIS12" Fact пишем 1 > ОК Получаем тот же результат, что и на рис. 1в. (только числа, выделенные синим цветом). Значения показывает цветовая шкала. Можете рисунок эпюры сделать крупнее: коэффициент Fact установите 2 или 3.	LINE STRESS STEP=1 SUB =1 TIME=1 SMIS6 SMIS12 MIN =-1.5 ELFM=30 MAX = .625 ELFM=16

Для того, чтобы лучше понимать, каким точкам стержня какое значение эпюры соответствует, повторите действие N217. Увидите, совмещённые с эпюрой внешние силы (кроме распределённых) и реакции.

Форма упругой оси нагруженной балки:

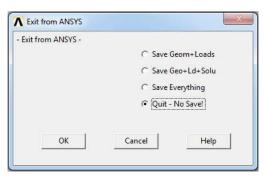

21

M_M > General Postproc > Plot Results >
> Deformed Shape >
KUND установить Def + undeformed
> OK

22 Это точная форма изогнутой оси. Сравните с приближённой на *рис. 1в.*

Для наглядности увеличиваем масштаб:

U_M > PlotCtrls > Style > Displacement Scaling > DMULT устанавливаем "User specified"
User specified factor увеличиваем в пять раз с 0.389 до 2 > OK


```
Выделяем мышью узел конечноэлементной модели, соответствующий точке G:
     U M > Select > Entities... >
     В окошке Select Entities установить
     "Nodes"
     "By Num/Pick"
                                                                                            ↑ NLIST Command
     Точку селектора установить на «From Full»
     > OK >
                                                                                            LIST ALL SELECTED NODES. DSYS=
SORT TABLE ON NODE NODE NODE
23
     Левой кнопкой мыши кликнуть на точку G на деформированной
                                                                                                                              THYZ THZX
0.00 0.00
     форме (правая точка формы).
                                                                                                   4.0000
                                                                                                           0.0000
     Кстати, при этом в окошке Select nodes припишется номер
     узла в этой точке «Node No. = 32»
     > OK
     Проверяем, действительно ли выделен узел с координатой X=4*l=2
     U M > List > Nodes... > OK
     Закрываем окно NLIST Command
     Угол поворота узла №32:
                                                                                              ↑ PRNSOL Command
     M M > General Postproc > List Results > Nodal Solution >
     Nodal Solution > DOF Solution > Z-Component of rotation > OK
                                                                                              PRINT ROT NODAL SOLUTION PER NODE
     Пропечаталась величина углового перемещения:
                                                                                               ***** POST1 NODAL DEGREE OF FREEDOM LISTING *****
                                                                                               LOAD STEP= 1 SUBSTEP= 1
TIME= 1.0000 LOAD CASE= 0
     ROTZ=0,7222
                                                                                               TIME= 1.0000
24
                                                                                               THE FOLLOHING DEGREE OF FREEDOM RESULTS ARE IN THE GLOBAL COORDINATE SYSTEM
     Положительная, значит – против часовой стрелки. Результат совпадает с рис. 1д.
                                                                                                 32 -0.72222
     Выделяем всё: U M > Select > Everything
                                                                                              HAXIHUH ABSOLUTE VALUES
                                                                                              NODE 32
VALUE -0.72222
```

Сохраняем проделанную работу:

U M > File > Save as Jobname.db

Закройте ANSYS:

 $U_M > File > Exit > Quit - No Save! > OK$

После выполнения указанных действий в рабочем каталоге остаются файлы с расширениями ".BCS", ".db", ".emat", ".err", ".esav", ".full", ".log", ".mntr", ".rst" и ".stat".

Интерес представляют ".db" (файл модели) и ".rst" (файл результатов расчёта), остальные файлы промежуточные, их можно удалить.